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Abstract-Constitutive postulates for Prandtl-Reuss elastoplasticity are selected, Based on them,
sufficient and necessary conditions for plastic irreversibility are found to be the yield condition and
the straining condition. This is then analyzed and it is pointed out that Prandtl-Reuss elastoplasticity
is nothing but a two-phase linear system with an on-off switch, which is operated in the pace of an
intrinsic measure of plastic irreversibility. Then the temporally global concept of the switch-on time
ton and the switch-off time toffand their determination and bound estimation is developed. Owing to
the implicit linearity, superposition formulae for the stress response are discovered. As an example,
the exact constitutive solutions for circular paths based on the superposition formulae are obtained
and ton and toflare determined, © 1997 Elsevier Science Ltd.

I. AXIOMS AND INTRODUCTION

In this paper we analyze the Prandtl-Reuss model and attempt to achieve a deeper under
standing ofits underlying structure; more precisely speaking, we explore the switching ofthe
mechanism of plastic irreversibility and the implicit principle of superposition of responses.
Although our consideration is limited to the Prandtl-Reuss model, the former issue is
considered as typical in the models of plasticity, whereas the latter may exist in some classes
of plasticity models more complicated than it.

The elastoplasticity of solid materials proposed by Prandtl (1924) and Reuss (1930) is
re-postulated as in the following system of axioms :

where

e= ee +flP,

s = 2Gee
,

is = 2hflP,

!~ 1,

i~ 0,

i!=i,

J~s's
!:=-h-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

with! = 1 being the yield condition. The two material constants, namely the shear modulus
G and the shear yield strength h, are both positive. The bold-faced e, ee, (f' and s are,
respectively, the deviatoric tensors of strain, elastic strain, plastic strain, and stress, all
symmetric and traceless, whereas). is a scalar. All the e, ee, (f', sand), are functions of one
and the same independent variable, which in most cases is taken either as the usual time or
as the arc length of the controlled strain path; however, for convenience, the independent
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Fig. I. One-dimensional shear stress-strain diagram.

=1

1>1
(forbidden)

Fig. 2. Allowable stress region! "" I-a compact spherical geometry.

variable no matter what it is will be simply called "time" and given the symbol t. A
superimposed dot denotes a differentiation with respect to time, d/dt. Without loss of
generality, it is also postulated that with the above differential model there is a time instant
designated as t = ta, called the zero-value (or annealed) time, before and at which the
material is in the zero-value (or annealed) state in the sense that the relevant values ~{ta),

ee(ta), eI'(ta), s(to) and A(to) are all zero.
The Prandtl-Reuss model is well known as the simplest yet most useful three-dimen

sional constitutive law for describing a class of mechanical behaviors of linearly elastic
perfect plasticity, of which a typical one-dimensional stress-strain diagram is shown in Fig.
I. The essential feature of this diagram is the flat yield which produces a sharp stress
boundary between elastic behavior at infinitely many parallel two-way line segments and
unrestricted plastic flow at two heavy horizontal one-way lines.

A mechanical-element model and two diagrams displayed in Figs 2-4 may help explain
the meaning of axioms (1)-(6), hopefully without misleading.t To illustrate the inequality
(4), Fig. 2 displays schematically the set of allowable stress states as a closed ball in Ithe s
stress space, which consists of an open ball of elastic states and its boundary, a hypersphere
with plastic irreversibility. The effect of the complementary trios (4)-(6) may be summarized
in the heavy two-segment line in Fig. 3, which hints that there exist just two phasc~s of
allowable states, the on and offphases of the plastic mechanism, corresponding to the two
segments. This topic is very important, but was conventionally addressed in the language
of loading, neutral loading and unloading criteria, and will be explored in Section 3. It
appears from Fig. 4 that the Prandtl-Reuss model might be something like the Maxwell
model ofviscoelasticity ; however, the damper in Fig. 4 is, in addition to the piston-eylinder
construction for simulating eqn (3), also equipped with an on-off switch, which is sketched
in Fig. 4 as a (Saint Venant) friction-slide for simulating eqns (4)-(6). Moreover, evel~ the

t cf. Figs 4 and 5 and the sentences immediately after eqn (24), in particular.



Switch and superposition 4283

(a)
f

1

A

(b) f

CD On
1

(2) Off

0 A
Fig. 3. The complementary trios (~)-(6) appear as (a) a two-segment lill;e composed of (b) two

segments: (j) the on phase p. > 0 and f == I} and <V the off phase {A. == 0 and f"';; I}.

s

hypoelastic spring
eqn (2)

slide
eqns (4)-(6)

damper
eqn (3)

e eqn (1)

S
Fig. 4. Mechanical-element model.

piston-cylinder construction herein is not a usual one, as it is governed by the A-rate damper
law

del'
s=2h

dA

in case dA > 0, instead of governed by the t-rate damper law

del'
s = 2hd('

(8)

(9)

As a consequence, the material in case dA > 0 obeys the A-rate law of Prandtl-Reuss
elastoplasticity
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Table 1. Underlying structure of the plastic on-off switch

Aspect

Criterion
Intrinsic measure A
Global properties

Level 1

Conventional criteria
Incremental d).
too and t off

Level 2

Sufficient condition
Integral equation
Bifurcation

Level 3

Sufficiency and necessity
Equations of state
Lorentz group

(10)

in the compact spherical geometry rather than the t-rate law of Maxwell's viscoelasticity

1 ds 1 de
2G dt + 2h s = dt (11)

in the unbounded Euclidean geometry. The two geometries, as well as the two equations
themselves, indicate that the time variations in the components in eqn (11) are uncoupled
but those in eqn (10) are coupled through A. One of the consequences of this is demonstrated
in an interesting example in which the relaxation testst of the two models are seen to be
almost identical except that the Prandtl-Reuss model requires,.l > 0, for which the sufficient
and necessary conditions are therefore very important and will be derived in Section 3. ,.l
involves t and A; while t is the independent variable, a measure representing the world
outside the material system; A is a dependent variable, an intrinsic measure of the material
system itself, measuring the degree of plastic irreversibility. The intrinsic measure Ais indeed
associated with the on-offswitch of the mechanism of plastic irreversibility. They lie in the
core of the structure of plasticity and will be studied in Sections 3 and 4, and further in
Sections 6 and 7.

To have a fuller and deeper understanding of the issue of the plastic on-off switch, it
is supposed that the three aspects as listed in Table 1 should be explored and for each aspect
the exploration could be advanced three levels deeper as suggested in the same tabk. As
regards the aspect of the criterion of plastic irreversibility, the level 2 has recognized
demarcation of only two cases, the plastic mechanism either switched-on or switched-off,
rather than three or four cases often present in conventional criteria. Moreover, the crit(:rion
and the demarcation are indiscriminately applicable to hardening, softening and perfect
plasticity [Hill (1958, 1967), Hong and Liu (1993), Liu (1993), Hashiguchi (1994)]. These
were treated at level 2 in a statement of sufficiency; both sufficiency and necessity have
been proved at level 3 [Hong and Liu (1993), Liu (1993)]. Regarding the aspect of the
intrinsic measure of plastic irreversibility, A, its introduction into plasticity has lead to time
independent flow theories flourishing and some unconventional theories. Further all the
level 2, an integral equation governing the evolution of A or its homeomorphism has been
obtained, and the current state of response is completely determined once the history of A
up to the current time is determined by solving the integral equation [Hong and Liou
(1993)]. Instead of the history of Ie which contains an infinite number of real numbers, at
level 3 only a finite number of the current values of an appropriate homeomorphism of A
and its first few order time derivatives are needed in an equation-of-state representation for
the current state of response. With regard to the aspect ofglobal properties, such temporally
global concepts as the switch-on time and the switch-off time are treated at level 1. Level 2
goes further to bifurcation analysis, i.e., analysis ofqualitative change of material behaviors
as material parameters and control parameters vary. At level 3 the nature of plasticity
models is studied in the context of the Minkowski spacetime and Lorentz group. The
present paper is confined to level 1 for the aspect of global properties and to level 2 for the
aspect of the intrinsic measure, while the aspect of the criterion is studied down to levlel 3 ;
of course, all the three aspects have been confined herein to the simplest, the Prandtl-Reuss
model.

t See Fig. 5 and the paragraph following eqn (19).
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Recall that for linear elasticity and viscoelasticity the superposition principle allows us
to present the general solution in terms ofa finite number of particular solutions. Similarly,
for a linear ordinary differential equation, or a system of such equations, a superposition
principle is available in general. Around 1893, Sophus Lie and several other mathematicians
posed the question whether superposition is restricted to linear equations or whether it can
be generalized. Since then the methods of Lie groups and Lie algebras have been developed
to identify and construct nonlinear differential systems for which superposition applies and
to derive explicit superposition formulae [Anderson et al. (1982); Winternitz (1982)).

In a similar spirit, although plasticity models appear to be highly nonlinear, the
Prandtl-Reuss model will be transformed in Section 5 into a two-phase linear system with
an on-off switch. It will then be made clear that it is a system of linear algebraic equations
during the off phase, but turns out to be a system of linear differential equations with
variable coefficients in the on phase. Owing to the implicit linearity, superposition formulae
for the stress response can be extracted, as to be derived in Section 8 and illustrated in more
details in Section 9.3. The concept and results are introduced in plasticity for the first time,
but the mathematics involved is much simplified for readability. Three consecutive block
diagramst in Section 5 provide a plain explanation how the superposition principle is
discovered from a nonlinear Prandtl-Reuss equation to a feedback system and then to a
linear augmented state equation.

The volumetric part of the Prandtl-Reuss behavior is linearly elastic and is thus
excluded from the present study in order to focus on the more interesting elastic-plastic
behaviors of the deviatoric part.

2. STRESS OPERATOR

Noting the positivity of G and h, we substitute eqns (2) and (3) into eqn (I), getting

which becomes

upon defining

The solution is

:/YS) = 2GYe,

(12)

(13)

(14)

(15)

which defines an operator that maps strain histories (or paths) into stress histories (or
paths). Here t is the current time and t; is an initial time, at which initial conditions are
prescribed. We note that the initial time t; is not necessarily the zero-value time to and the
initial stress s(t;) does not necessarily vanish, for the material may suffer various loadings
during manufacture and handling before it comes into use or reuse; indeed, t; ~ to, s(t;) :1= 0
and Y( t;) :1= Y( to) = I in general. Obviously, the expression of eqn (IS) that stress is in
terms of the strain history is usable only if the Y history is already known. Thus, Y deserves
more study, as will be pursued in the following two sections.

tSee Fig. 8.
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(a) Maxwell model
e12

L..J__'::::::::= t
ti

(b) Prandtl-Reuss model
e12

if A> 0
(A = 1 here)

'--'-----=- t
ti

Fig. 5. Relaxation tests for (a) Maxwell's viscoelastic model and (b) the Prandtl-Reuss elastoplastic
model.

3. SWITCH OF PLASTIC IRREVERSIBILITY

In this section we shall see that the complementary trios (4), (5) and (6) enable the
model to possess an on-off switch of the plastic mechanism, the switching criterion ofwhich
are derived right below. The inner product of sand eqn (12) is

1 i
-s's+ -S'S = s'e
2G 2h '

(16)

where the dot between two tensors denotes the inner product; e.g., S' e= sijeij' If the yield
condition! = 1 is satisfied, the above equation becomes

hi = S' e if!= I ;

recalling the positivity of h, we have

if! = 1, then S' e > 0 <:> i > 0 ;

hence

if= I and s·e>O}=i>o.

(17)

(18)

(19)

At this moment let us turn to Fig. 5. The conditions under which the Prandtl-Reuss
materials exhibit the pseudo-relaxation curvet in Fig. 5(b) are both! = 1 and S' e> 0,
since they guarantee ~ > 0 according to the above statement (19). These can be donie by,
for example, for all t > t;

e12(t) = constant,

2G
h2(s12(t;WexPh(ti-t),

S22(t) = SI3(t) = S23(t) = 0,

so that

tThe prefix "pseudo-" is added because S'l(t) :f' 0 in eqn (20).

(20)
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G
SI2(t) = SI2(t;) expJ/(t;-t),

he (t) ---
II - 2SI1 (t) ,

e22 (t) = e I3(t) = e23(t) = 0,

fit) = 1, i(t) = 1,
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as shown in Fig. 5(b).
On the other hand, if ~ > 0, eqn (6) assuresj = 1, which together with eqn (18) asserts

that

i > 0 => if= 1 and S' e> O}. (21)

Hence, from eqns (19) and (21), we conclude that the yield conditionj = 1 and the straining
condition S' e> 0 are sufficient and necessary for plastic irreversibility ~ > O. Considering
this and the inequality (5), we thus reveal the following criteria for plastic irreversibility:

i{> 0
iffj= 1 and s'e > 0,

=0 otherwise,

or via eqn (14),

y{> 0 iffj= 1 and s'e > 0,

=0 otherwise.

(22)

(23)

The "iff" and "otherwise" in the above mean "ifand only if" and "iffj < 1or/and S' e~ 0,"
respectively. According to the complementary trios (4)-(6), there are just two phases: CD
~ > 0 and j = 1, and ® ~ = 0 and j ~ 1. The complementary trios can be represented as
the heavy two-segment line of Fig. 3(a), and in Fig. 3(b) the two phases are further
distinguished as two segments. From the criterion (22) it is clear that CD corresponds to the
on phase while <D to the off phase. In the on phase, ~ > 0, Y > 0, the mechanism of plastic
irreversibility is working, and the material exhibits elastoplastic behavior, while in the off
phase, ~ = 0, Y = 0, and the material is reversible and elastic. Thus eqn (22) (or eqn (23))
is called the on-off switching criterion for the on-off switch of the mechanism of plasticity.

The complementary trios (4)-(6) together with the expression (18) assert that

no matter whether in the on or off phases. Substituting eqns (2) and (3) into the above
equation and considering the positivity of the tWo material constants, we obtain

~'ee = o. (24)

This equation and eqn (1) require that the connection of the two mechanical elements in
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ee

~{

Fig. 6. Orthogonal decomposition of strain rate.

On

Off

series as schematically depicted in Fig. 4 be an orthogonal vector addition as shown in Fig.
6. Hence we deduce that

(25)

where Ilell :=~ is the Euclidean norm of eand so on. Furthermore, we can summarize
Fig. 6, eqns (2) and (3) and the on-off switching criterion (22) altogether in one constitutive
diagram for the Prandtl-Reuss model as in Fig. 7.

In passing it is worth noting that

(26)

by eqns (24) and (1). Materials which satisfy such an inequality e'e" ~ 0 are said to be
kinematically stable [e.g., Lubliner (1984)].

•

2G~
IfA=O
Switch-off

s If IIsll = V2h and s.e > 0 s
Switch-on

•

lonl

(a)

[2[]
(b)

Fig. 7. Constitutive diagram (0 perpendicular, II parallel).
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4. MEASURE OF PLASTIC IRREVERSIBILITY

It is noted that the flow model represented by the axioms (1)-(6) is a time-independent
material model, because once dt is factored out, the differential eqns (1)-(3) and (5)-(6)
become incremental equations independent of time. Equation (5) indicates that A. is a time
like parameter and in the time-independent model plays the role of the arrow of time. The
same can be said of Y because of eqn (14). In fact, either one, as evidenced in criteria (22)
or (23), can serve as an intrinsic measure of plastic irreversibility, the calculation of which
is crucially indispensable to the evaluation of the evolution of the material behavior, as has
been partially reflected in eqn (15), and is the topic of investigation right below.

If the yield condition! = I is satisfied, it follows from eqns (14) and (17) that

. G
Y= - YS'e

h2 '

which together with eqn (15) gives

. G 2G
2 f.'Y(t) = - Y(t;)s(t;)· e(t) + - e(t)· e(e) y(e) de.

h
2

h
2

"

Integrating and changing the order of integrations, we have

(27)

(28)

(29)

The above equation is a linear Volterra integral equation of Y. The existence and uniqueness
of the solution Y(t) are guaranteed under essentially unrestricted condition on the e strain
history.

We have noted that A. and Yare intimately related by the definition (14). In fact,
besides A. and Y, there are other quantities, e.g., the Odqvist's equivalent plastic strain (!P,

dissipation A (herein defined as the dissipated energy per unit volume), etc., which are all
intimately related in the sense that their differentials are the same up to a multiplicative
constant (e.g., f.. = j3~p = J2lltlPlI), or there exists a homeomorphism between any pair
of them and the homeomorphism is a strictly increasing material function (e.g., for the
Prandtl-Reuss model, A = h~ and eqn (14) also). Therefore, anyone ofthem can be chosen
to play the pivotal role in the on-off switching criterion like (22), the role of an indicator
of irreversible change of material, the role of so-called material age, intrinsic time, internal
time, the arrow of time, etc., in this time-independent model.

In the rest of this section, we shall give an estimate of bounds on Y and Y in order to
probe the tendency of the evolution of this key measure. From eqns (3), (5), (6), (7) and
(25),

which together with eqn (14) sets up the following bounds:

Y(t;) ~ Y(t) ~ l1(t;, t) Y(t;) if t; < t,

where

(30)

(31)

It is interesting to note that JIIe(e) II de is indeed the arc length of strain path and
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(j2G/h) Ilell is the largest eigenvalue of the state matrix A of the linear system (41) of the
on phase to be introduced in Section 5. Let

(32)

Thus, in the interval [ti, tb), the kernel e(t) •e(e) of the integral equation (28) is positive, and
upon noting J.lUi, e) < J.l(t;,tb) the bounds of Y in this interval can be estimated by eqn (30)
as follows:

(33)

Then we have an estimate of lower and upper bounds on Y:

where

. 2G
2

[ I ]Y,(t) = Y(t;) h2 2G s(t;) . e(t) +e(t) • [e(t) -e(t;)] ,

(34)

(35)

(36)

5. TWO-PHASE LINEAR SYSTEM

If the mechanism of plasticity is switched off, the Prandtl-Reuss model (1)-(6) reduces
to

s = 2Ge, (37)

which is linear and instantaneous. Integrating both the sides of the above equation from
the initial time t; to the current time t yields

s(t) = s(t;) +2G[e(t) -e(t;)]. (38)

On the other hand, if the mechanism of plasticity is switched on, the Prandtl-Reuss model,
like other plasticity models, appears to be nonlinear as manifested in the following nonlinear
equation

GS'e
s+--s = 2Ge,

h2
(39)

which is obtained from eqns (12) and (17). Equation (39) has been studied intensiv1ely in
the vast literature of numerical plasticity; see, for example, Krieg and Krieg (1977).

However, a deeper understanding of the underlying structure of the model may be
~chieved if we approach it from different views. For these purposes let us introduce
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Xl Y(a\sIJ +a2s22 ) al a2 0 0 0 0 YS II

X2 Y(a3 s1 J +a4s22) a3 a4 0 0 0 0 YS22

X3 YS23 0 0 1 0 0 0 YS23
X= .- (40)

X4 Ys 31 0 0 0 1 0 0 Ys3J

X5 Ys l2 0 0 0 0 1 0 Ys l2

Xo Yh 0 0 0 0 0 1 Yh

as the state vector and rearrange eqns (13) and (27) as follows:

X=AX,

with the state matrix A given by

2G 05x 5
A.=-

h

(41)

alell +a2e22

a3 ell +a4e22

e23
(42)

e31

el2

e3l el2 0

The nonlinearity (of eqn (39» has been traded for variable coefficients A (of eqn (41)).
Solutions to the new eqn (41) can be superposed, while this is not true of the original
equation. Here

al .= sin (0+ i). (43)

a2 l= sinO, (44)

a3·= cos (0+ i). (45)

a4'= cosO, (46)

in which 0 can be any real number [Il)'ushin (1963), Ohashi et al. (1975)]. If choosing 0 = 0
we have the Il'yushin stress space ~3(XI>X2,X3,X4,X5)/Y'The state matrix A possesses
the following pro~rties : AI = A, tr A = 0, det A = 0, and the eigenvalues are 0 (multiplicity
is four) and ±~2Gllell/h. As usual, the superscript t denotes the transpose of matrix, tr
stands for trace and det for determinant. Note that the state eqn (41) is linear and of the
sixth order.

The block diagrams of Fig. 8 contrast three different points-of-view on the underlying
structure of the on phase, Fig. 8(a) adopting the viewpoint of input-system-output in
which the system is nonlinear, Fig. 8(b) also adopting the viewpoint of input-system-output
but with output feedback (i.e., returning stress s) and state feedback (i.e., compensating with
the intrinsic measure rate 1), while Fig. 8(c) adopting the viewpoint of state equation in
which the state vector is the internal state variables Ys and Yh (i.e., stress s and the intrinsic
measure Y), and the state matrix is symmetric, traceless, singular, degenerate, and consists
of the strain rate eand the intrinsic pseudo-relaxation measure G/h. It is observed that the
implicit linearity is unfolded at the expense of raising one dimension up, and it looks linear
in the extended state space and is not completely instantaneous. Thus we have revealed the
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(a)

e

e

(b)

s+ G~;eS = 2Ge t---.....

eqn (39)

l' 1 .x .
2G S + 2h S = e
eqn (12)

;\

. 1
A = liS' e
eqn (17)

s

S

(c)

X=AX

eqn (41) : Ys

Y

Fig. 8. Superposition in the on phase explained by block diagrams: (a) nonlinear equation, (b)
feedback system, (c) linear state equation.

linearity of the Prandtl-Reuss model both in the on and off phases. It is described by a
system of linear algebraic eqns (38), (or, equivalently, the differential eqns (37) during the
off phase, but governed by a system of simultaneous linear differential eqns (41) with
variable coefficients (or, equivalently, by the consecutive linear integral eqns (29) and (15))
in the on phase. Indeed, it is a two-phase linear system with an on-off switch, as summarized
diagrammatically in Fig. 9.

6. SWITCH-ON TIME

In this section and the following one we devote ourselves to a more global (temporally
global) problem, namely to investigate when a given input of strain history switches
plasticity mechanism on and off.

For an initial stress s(ti ) which satisfies the inequality (4) and a strain history starting
from the initial strain e(ti ), the switch-on time can be determined according to the criterion
(19) as follows. First solve for t the following algebraic equation
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Off

s(t) = S(ti) + 2G[e(t) - e(ti)] eqn (38)

If Iisil = V2h
and s· e > 0

Switch-on

IfY=O
Switch-off

On

Integral equations (15) and (29)

(a)

4293

Off

S = 2Ge eqn (37)

If Iisil = V2h
and s· e > 0

Switch-on

If Xo = 0

Switch-off

On

X = AX eqn (41)

(b)
Fig. 9. Formulations equivalent to the flow model of eqns (1)-(6): (a) linear integral formulation,

(b) linear differential formulation.

I I h2

-s(t;)· s(t;) + -Gs(t;)· [e(t) -e(t;)] + [e(t) -e(t;)]· [e(t) -e(t;)] =-, (47)
4G 2 2G 2

which is obtained by substituting eqn (38) into the yield condition s(t) . s(t) = 2h2
. However,

the solution t of eqn (47) must satisfy s(t) •e(t) > 0 in order to be the switch-on time ton- If
there exist no solutions to eqn (47) or the solution t to eqn (47) does not satisfy s(t) •e(t) > 0,
then the strain path will not switch on the plastic mechanism.

7. SWITCH-OFF TIME

The task in this section is to determine the switch-off time toff such that I'(tojf) = 0 but
I'(~) > 0 for all ~ E [t;, toff), given a strain history. Accordingly, we have to solve for t the
following functional equation

. G 2G 2 ItY(t) = - Y(t;)s(t;)· e(t) +-- e(t)· e(~) Y(~) d~ = 0;
h2 h

2
';

(48)

the switch-off time toff is the smallest t > t; which satisfies the above equation.
Next, we give an estimate of bounds on the switch-off time toff. Instead of eqn (48) one

may solve the following lower and upper bound equations:

I
2Gs(t;) ·e(t)+e(t)· [e(t)-e(t;)] = 0, (49)

(50)

which are obtained by nullifying I'lt) and I'u(t) of eqns (35) and (36), respectively. The
lower and upper bounds on the switch-off time toff are the smallest t > t; which satisfy eqns
(49) and (50), respectively.
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An example illustrating the determination of ton and toll for a particular path will be
given later in Sections 9.4 and 9.5, respectively.

8. SUPERPOSITION FORMULAE

In this section we explore the superposition principle [cf. Anderson et al. (1982)] for
the Prandtl-Reuss model, starting from the nonlinear tensorial eqn (39). Assume So to be
a particular solution, satisfying

, Gso'c ,
So + --So = 2Ge.

h2

Then the time derivative of the following complementary solution

x:= S-So

with the differential terms replaced by eqns (39) and (51), yields

G Gx'cx = - - [(so 'c)l+so ® c]x- --x,
h 2 h2

(51)

(52)

(53)

in which I is the fourth order identity tensor, Ix = x, and ® denotes the tensor product,
(So ® c)x = So(c' x).

The equation adjoint to eqn (53) is

G G
Y= -[(so 'c)l+c ® so]y- -c.

h2 h2

So the projective map

X
z:=---

l+y'x

indeed supplies a linear homogeneous equation for Z by using eqns (53) and (54) :

Equation (55) can be inverted to

Z
X=---.

l-y'z

It is more convenient to eliminate y' x and y' z from eqns (55) and (57). Let

VI := y' Z, V2:= y' x.

Straightforward manipulation gives

(54)

(55)

(56)

(57)

(58)
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. G 0v = --zoe
I h2 '

The integrations of the above two equations yield

GI'VI = y. Z = - - z· de,
h2

V2 = y. x = - I +exp ( - ~ fx 0 de)'

Thus we obtain

z = x exp (~fx . de)'

z
x=-----

GI'1+- zode
h2

from eqns (55) and (57).
We can now write a linear superposition law for z satisfying eqn (56) :
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(59)

(60)

(61)

(62)

(63)

(64)

(65)

in which Cb k = I, 2, 3,4,5, are constants and Zb k = 1,2,3,4,5, are linear independent
solutions of eqn (56). The superposition law for z can be transformed to a superposition
law for s as follows: substituting eqn (65) into eqn (64) and using eqn (63) for Zb we obtain

(66)

The integral term can be integrated out so that

(67)

Then substituting the above equation into eqn (52), we obtain the superposition formula
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(68)

where Sb k = 0, 1, 2, 3, 4, 5, are the six independent particular solutions of eqn (38). Thus
the formula (68) expresses the general solution of eqn (39) with Cb k = 1, 2, 3, 4, 5,
determined by the five initial stress components Sll(t;), ~z(t;), SZ\t;), S31(t;), SlZ(tJ

The superposition law (68) can be verified by another approach, starting from the
linear matrix eqn (41), which has the general solution:

(69)

in which Cb k = 0, 1, 2, 3, 4, 5, are constants and X.!': k = 0, 1, 2, 3, 4, 5, are linear
independent solutions ofeqn (41). Since a l a4 - aZa3 = -V 3/2 =f. 0, the relation (40) is invert
ible and therefore

5

Ys = L Ck YkSk>
k~O

The above two equations can be combined to

5

L CkYkSk
k~O

S=-5---

L CkYk
k~O

(70)

(71)

(72)

Because at the zero-value time Y(to) = Yo(to) = Y1(to) = Yz(to) = ... = Y5(to) = 1 by eqn
(14), it follows from eqn (71) that L~=o Ck = 1 or Co = 1-L~~ I Ck' So the following super
position formula

(1 -ktl Ck) Yoso+ktl Ck YkSk

s=

( 1- ktl Ck) Yo +JI Ck Yk

holds. Some manipulation gives

5

L Ck(Sk - So) Yk
k~1

(73)

(74)

Dividing both the numerator and denominator in the above equation by Yo and substituting
for Yk/ Yo the following
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Yk (G II )Yo =exp h2 (Sk-SO) 'de , k= 1,2,3,4,5,
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(75)

which is obtained from eqns (14) and (17), we obtain eqn (68) again.
Comparison of the above two approaches leads us to conclude that the existence of

the superposition formulae is attributed only to the implicit linearity no matter how they
were discovered. The superposition formulae (68) and (73) are very enlightening, as will be
demonstrated in the following section through a concrete example.

9. EXAMPLE: CIRCULAR PATHS

By a given input of strain history (resp. path) we mean either a prescription of the
values of all strain components during a certain (finite or semi-infinite) time interval (resp.
arc length), or specifying just part of strain components and allowing the other stress
components which are conjugate to the unspecified strain components to be zero. The
former may be given the specific name full strain control. However, the latter is more
popular, for example, the strain controlled mode of a tension test.

9.1. Circular paths
In the sequel of this paper we will for clarification and demonstration purposes

concentrate our study to a more specific class of histories, namely, the response to the
following circular strain paths:

(76)

in which eo and w = 2n/T are, respectively, the amplitude and circular frequency of oscil
lation with T being the period of input, and 011 and 012 are constants denoting the center of
the circular path. Whereas e(t;) is the prestrain, s(t;) is the prestress. One of the application
areas of the paths is to study 900 out-of-phase cyclic effect. Note that wt in eqn (76), and
in due places which follow, may be replaced by w(t- t;) + cP, to more flexibly account for
the initial phase cPj at the initial time tj. However, the replacement will not increase generality,
since translating the time axis such that t, is adjusted to an appropriate value can also
account for the initial phase.

For the paths, the second, third and fourth rows ofe,9.n (41) give en = e23 = e31 = 0 if
taking () = n/6 so that a l = 1, a2 = 1/2, a3 = 0 and a4 = .J3/2. Deleting vanishing rows and
columns, we have

and

(77)

where

A,= rt.w[ ~
-SlOwt

o
o

coswt

-sinwtj
coswt ,

o
(78)

2Geo
rt.'=-h- (79)

is the amplitude ratio, with rt. < 1, = 1, > 1 signifying the amplitude below, equal to and
greater than the yield strain. Consequently, eqn (41) becomes
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A\ = -awXosinwt,

%z = awXocos wt,

%0 = aw( -Xl sinwt+Xz coswt).

(80)

(81)

(82)

9.2. Stress responses
After some operations on the above three equations, we find that

(83)

where the superscript (iii) stands for the third order time derivative. If the particular
solutions of the above equation is obtained, the particular solutions of Xl and X z can be
calculated straightforwardly by eqns (80) and (81). Accordingly, we have the following
fundamental matricest of eqns (80)-(82) :

(a) For a smaller amplitude, ex < 1,

u=

excoswt

a sin wt

ex cos(m + l)wt excos(1-m)wt---'-----'---- + ---'----'---
2(m+ 1) 2(1-m)

exsin(1-m)wt exsin(1+m)wt
2(1-m) + 2(1 +m)

ex sin (1 +m)wt

2(1 +m)

excos(1-m)wt
2(1-m)

exsin(1-m)wt
2(1-m)

(J. cos(m + 1)wt

2(m+ 1)

cosmwt

(b) For the critical amplitude, ex = 1,

sinmwt

(84)

[

COS wt wt cos wt - sin wt

U = sinwt coswt+wtsinwt

1 wt

(c) For a larger amplitude, ex > 1,

- 2wt sin wt+ (W
ZtZ

- 2) cos wt]

2wt cos wt + (W ZtZ - 2) sin wt .

W
Z tZ

(85)

_emwt

excoswt ---(msinwt-coswt)
ex

e- mw1

--(msinwt+coswt)
ex

Here

U=
ex sin wt

emwt

-em cos wt +sin wt)
:x

e-mwt .
--( -mcoswt+smwt)

ex

(86)

The state transition matrix G(t, 1) is then evaluated by

(87)

(88)

Upon finding the state transition matrix G, the solution of X can be expressed as in the
following:

t The definitions and usage of a fundamental matrix and the state transition matrix can be found in most
books on the systems of ordinary differential equations.
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y(t)SII (t) = GIl (t, t;) Y(t;)Sll (t;) +G IZ (t, t;) Y(t;)SIZ (t;) +hG I3 (t, t;) Y(t;), (89)

in which Gij denotes the ii-element of G. The stress response can be calculated by

(92)

(93)

9.3. Superposition ofstresses
For two-dimensional strain paths, the superposition formula (68) reduces to

(94)

which asserts that the three particular solutions of stress So, Sj and Sz can be used to generate
the general solution of stress s. In particular, the three columns of U obtained earlier are
three particular solutions of X, and therefore can be utilized to generate three particular
solutions of stress by using eqn (77) as follows:

(a) a < 1:

(b) a = 1 :

[

ha cos(m+ l)wt haCOS(1-m)wt]

S = [haCoswtJ S = 2(m+ 1) cosmwt + 2(1-m) cosmwt

o ha sin wt' I ha sin(1- m)wt ha sin(1 + m)wt '---'-----'------ + ----'--------'------
2(1-m)cosmwt 2(1+m)cosmwt

[

ha sin(1 +m)wt _ ha sin(l-m)wt ]
2(1 +m) sinmwt 2(1-m) sinmwt

~= .
ha cos(1 - m )wt ha cos(m + 1)wt

2(1-m) sinmwt 2(1 +m) sinmwt

[

h[(W
Z

[z -2) cos wt-2wt sin wt]]
wZtZ

Sz = h[2wtcoswt+ (WZtZ-2) sinwt] .

wZtZ

(95)

(96)
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(c) rx > 1:
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[h [
~(cos wt-m sin wt)]

coswtJ rx
So = . ,SI = ,

hsmwt h .
-em cos wt +sm wt)
rx

[

h . ]-em sm wt+cos wt)

s, ~ ~;-mcoswl+sinwt) .
(97)

Note that the particular solutions SI> Sz, So satisfy the governing eqn (39) with the path (76)
substituted, but do not account for any initial condition.

Similarly, for two-dimensional strain paths, the superposition formula (73) reduces to

in which Yo, YI and Yz are the third row of U divided by h :

(a) rx < 1:

(98)

(b) rx = 1:

1
Yo =h'

cosmwt
YI =--h-

sinmwt
Yz = h (99)

(c) C( > 1 :

1
Yo =h'

e~mwt

Yz =-h-'

(100)

(101)

The two constants Co and CI in eqn (98) can be determined by solving the following
simultaneous equations:

The results are

where

CloCn -CZOCIZ
CI = ,

CIl Cn- CZI Cl2

CIICZO-CZICIO
Cz =

CII CZZ- C21 Cl2
(104)

CIO:= YO(tj)[SII(tJ-S~I(tj)],

CII := CIO - Y I (tJ[SII (tJ -Sll (tJ],

CIZ:= ClO - YZ(t;)[SII (tj) -s1 1
(tJ],

CZ O := YO(tJ[SIZ(tJ-S~Z(tJ],
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500
(a) ex<1 (b) ex=1 (c) ex>1

400200
t (8)

I
I
I
I

--- SI -- S2 -- So-S

-500 +-----...-------, ,r------r,------"
o 200 400 0 200 400 0

t (8) t (8)

o

-500

500

o

-III
l:l..::s-

-III
l:l..::s-

Fig. 10. Superposition of stresses for (a) smaller amplitude (a < I), (b) critical amplitude (a = I),
(c) larger amplitude (:x > I).

CZ I := Czo - Y I(ti)[SIZ (t,) _sjZ (tJ],

Czz:= Czo - YZ(t,)[SIZ(t,) -s1 Z(t,)]. (l05)

After substituting these results into eqns (98) or (94) we obtain the solutions of the stress
components Sl1(t) and SIZ(t) for the prescribed initial values Sll(t;) and SIZ(t,). In this sense
we have derived the formulae of superposition to generate the general solution of the stress
response.

Figure 10 shows examples of the superposition of stress responses. In the calculations,
G = 50,000 MPa, h = 400 MPa were taken. There provided three examples with different
amplitudes:

(a) eo = 0.00397, 0( = 0.9925 < 1, smaller amplitude,

(b) eo = 0.004, 0( = 1, critical amplitude,

(c) eo = 0.005, 0( = 1.25> 1, larger amplitude.

Other data for the three inputs of circular strain paths (76) were prescribed identically as
in the fol1owing: T = 100 seconds, t, = 0 second, (all, 0IZ) arbitrary, and the initial stresses
Sl1 (t,) = S12(t;) = O. The particular solutions s], 5z, So and the stress 5 obtained by using the
superposition formula were al1 plotted in the figures. Being elastic so that eqns (94) and
(98) are not applicable, the beginning portions of the curves of about ten more secondst
are not shown. Note that the phases ofsl , 5z, 50 and 5 are different and that the amplitudes
of the particular solutions 5], 5z, So are immaterial.

t The switch-on times are slightly different for the three examples.
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9.4. Switch-on time
For the path (76) with initial stresses Sll(t) and SI2(t) satisfying the inequality (4),

which is simplified to (Sll?+ (SI2)2 ~ h2
, the switch-on time is determined by solving the

following equation for t and taking the smallest t ~ ti :

which is obtained by substituting eqn (76) into eqn (47), and in which

[
Sll (t) J2 [S12 (t) J2bo :=I-a2

- -h-' -(1. cos wt j - -h-' -a sin wti •

Under the condition

Ibol < Jbi +bL

the switch-on time ton is found in Hong and Liu (l996a):

(106)

(107)

(108)

I
I [bo b2 J- arcsin ~ - arccos ~

t = w y' bi + b~ y' bi + b~
on I . bo b

2
- [arcslO Jbf+bI +arccos Jbf+bIJ
w bi +b~ hi +b~

if b} < O.

(109)

If the condition (108) is not satisfied, the circular strain path (76) never switches on the
plastic mechanism [Hong and Liu (l996a)].

9.5. Switch-off time
As Y(t) = 0, switching-off occurs, as specified by eqn (48). For the smaller amplillude

case a < I, the switch-off time tolTis given by Hong and Liu (1996a) as

I mJbi +b~ -b~
toff = t j + - arctan b .

mw 0
(110)

For the other two cases a ~ I, switching-off never occurs once already in the on phase,
irrespective of prescribed initial stresses and the initial phase of the input circular strain
path [Hong and Liu (1996a)].

Finally, an example is given to illustrate the significance of the temporally global
concept of switching-on and switching-off. All the data used in the calculations are: the
same as those used in Section 9.3, except herein eo = 0.003 (a = 0.75 < I). For this. the
formulae (109) and (110) derived in the above give the switch-on time equal to 23.2 seconds
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2: switching-on
3: switching-off
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-500
-500 o

S11 (MPa)

4

500

Fig. II. Stress response (12345345 ...) to a strain input of periodic circular path.

and the switch-off time equal to 65.1 seconds (i.e., 0.651 cycle). Figure 11 shows the stress
response path 12345345 ... , starting at point 1, switching on at point 2, then tracing 0.651
cycle of the yield circle, and switching off at point 3, from which on rotating around the
smaller circle 345, which is tangential to the yield circle at point 3, around and around and
never switching on again. Since the endless path 345345 ... is elastic while the preceeding
arc 23 is elastoplastic, we say we have observed the phenomenon of shakedown. Before
closing the example, it is interesting to note that the Prandtl-Reuss elastoplasticity has
responded to an input of circular strain path by an output of piecewise circular stress path.

10. CONCLUDING REMARKS

In this paper we have established three types of formulations for Prandtl~Reuss

elastoplasticity: the axiomatized version of the flow model of eqns (l )-(6), the linear
integral formulation in Fig. 9(a), and the linear differential formulation in Fig. 9(b). We
have also discovered the superposition formulae (68) and (73), illustrating their usage. Only
to the implicit linearity is attributed the existence of the superposition formulae no matter
how they were discovered. The on--off switch of the mechanism of plastic irreversibility is
indeed an indispensable part of a model of elastoplasticity. In this paper on the Prandtl
Reuss model we have exploited the meaning of the complementary trios (4)-(6), derived the
on-off switching criteria (22) or (23), and posed the temporally global issues of switching-on
and switching-off. The nature and profound content of the temporally global behavior can
be further investigated in the framework of theories of dynamics and group, which will be
presented in separate articles [Hong and Liu (l996a)).
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